AI Citation Opportunity Monitor: Automated Brand Engagement

The Challenge of Real-Time Brand Monitoring

In today's fast-paced digital landscape, consumers are constantly discussing products, ingredients, and shopping experiences across social platforms. For grocery and retail brands, these conversations represent golden opportunities to provide value, build trust, and establish thought leadership. But manually monitoring dozens of communities for relevant discussions? That's a full-time job nobody has time for.

Enter the AI Citation Opportunity Monitor

This automated system scans Reddit every 10 minutes, hunting for high-value conversations where your brand expertise can genuinely help consumers. It's not about spam or self-promotion—it's about being present when people need answers.

How It Works

1. Intelligent Scanning

The system monitors 20 carefully selected subreddits where grocery and retail discussions thrive:

  • Shopping communities (r/grocery, r/Costco, r/aldi, r/traderjoes)

  • Budget-conscious groups (r/Frugal, r/EatCheapAndHealthy, r/budgetfood)

  • Dietary communities (r/keto, r/vegan, r/glutenfree, r/dairyfree)

  • Culinary spaces (r/Cooking, r/AskCulinary, r/MealPrepSunday)

2. Smart Classification

Each post is analyzed and categorized into one of five opportunity types:

CategoryDescriptionIngredient EducationQuestions about food science, nutrition facts, or ingredient sourcingBudget vs QualityPrice comparisons, value discussions, premium vs. store-brand debatesProduct SwapsSeeking alternatives for allergies, preferences, or availabilityDietary RestrictionsNavigating keto, vegan, gluten-free, or other dietary needsRetail TrustStore experiences, product quality concerns, shopping recommendations

3. Persona Matching

Not every expert voice fits every conversation. The system matches opportunities to the most credible persona:

  • Nutrition Adviser — For ingredient and health-focused discussions

  • Value Analyst — For budget and price comparison topics

  • Culinary Expert — For cooking techniques and recipe questions

  • Operations Manager — For supply chain and availability inquiries

  • Pharmacist — For supplement and dietary restriction guidance

4. Compliance-Aware Response Generation

Using GPT-5, the system drafts 2-4 response options for each opportunity. Every response includes:

  • Appropriate disclosure language

  • Helpful, educational content

  • No aggressive sales pitches

  • Tone matching for the community

5. Slack Alerts with Action Buttons

When opportunities are found, structured alerts arrive in your Slack channel with:

  • Post summary and direct link

  • Confidence score and category

  • Pre-drafted response options

  • One-click action buttons

The Technical Foundation

Built on the Mastra framework, this automation leverages:

  • Time-based triggers running every 10 minutes

  • 5-step workflow orchestration with error handling

  • AI-powered classification using advanced language models

  • Weighted persona matching algorithms

  • Slack integration for real-time team notifications

Why This Matters

Speed: Opportunities decay quickly. A helpful response within the first hour of a post gets 10x more visibility than one posted days later.

Consistency: Every opportunity is evaluated using the same criteria, ensuring nothing slips through the cracks.

Quality: AI-generated drafts maintain brand voice while human reviewers make final decisions.

Scale: Monitor 20+ communities simultaneously—something no human team could sustain.

Getting Started

The system requires two simple configurations:

  1. Reddit API credentials for accessing post data

  2. Slack webhook for delivering alerts to your team

Once configured, the monitor runs autonomously, surfacing opportunities and delivering actionable insights directly to your team's workflow.

Transform passive social monitoring into active brand building. Let AI find the conversations that matter—so your team can focus on providing genuine value.


Building an AI-Powered Social Monitoring Automation with Mastra

A step-by-step technical guide to creating automated content monitoring, classification, and alert systems using AI agents and workflows.

Overview

This guide walks you through building an automation that:

  • Scans social platforms on a schedule

  • Classifies content using AI

  • Matches opportunities to response strategies

  • Generates context-aware draft responses

  • Delivers actionable alerts to your team

Time to build: 2-3 hours
Difficulty: Intermediate
Stack: TypeScript, Mastra Framework, Inngest, OpenAI

Architecture

┌─────────────┐ ┌──────────────┐ ┌─────────────┐ │ Cron │───▶│ Scanner │───▶│ Classifier │ │ Trigger │ │ Tool │ │ Tool │ └─────────────┘ └──────────────┘ └─────────────┘ │ ▼ ┌─────────────┐ ┌──────────────┐ ┌─────────────┐ │ Delivery │◀───│ Response │◀───│ Matcher │ │ Tool │ │ Generator │ │ Tool │ └─────────────┘ └──────────────┘ └─────────────┘

Step 1: Define Your Monitoring Scope

Before writing code, define:

  1. Data Sources: Which platforms/APIs will you scan?

  2. Categories: How will you classify content? (3-7 categories recommended)

  3. Response Personas: What expert voices will respond? (2-5 personas)

  4. Delivery Channel: Where do alerts go? (Slack, Discord, Email, etc.)

Prompt to Define Your Use Case

I want to build an automated monitoring system for [YOUR DOMAIN].
Help me define:
1. Five categories for classifying [CONTENT TYPE] based on [YOUR GOALS]
2. Three to five expert personas that could credibly respond
3. Keywords and patterns that indicate high-value opportunities
4. Risk factors that should flag content for human review


Step 2: Create the Scanner Tool

The scanner fetches content from your data source.

File: src/mastra/tools/scannerTool.ts

import    from "@mastra/core/tools";
import    from "zod";

export const scannerTool = createTool({
  id: "content-scanner",
  description: "Scans [PLATFORM] for relevant content opportunities",
  
  inputSchema: z.object({
    sources: z.array(z.string()).optional(),
    limit: z.number().default(20),
  }),
  
  outputSchema: z.object({
    items: z.array(z.object({
      id: z.string(),
      title: z.string(),
      content: z.string(),
      source: z.string(),
      url: z.string(),
      timestamp: z.number(),
      metadata: z.record(z.any()).optional(),
    })),
    totalScanned: z.number(),
    scanTimestamp: z.string(),
  }),

  execute: async ({ context, mastra }) => {
    const logger = mastra?.getLogger();
    logger?.info("🔍 [Scanner] Starting content scan");
    
    const { sources, limit } = context;
    const items = [];
    
    // YOUR API FETCHING LOGIC HERE
    // Example: fetch from Reddit, Twitter, RSS, database, etc.
    
    logger?.info(`✅ [Scanner] Found $ items`);
    
    return {
      items,
      totalScanned: items.length,
      scanTimestamp: new Date().toISOString(),
    };
  },
});

Prompt for Scanner Implementation

Write a TypeScript function that fetches recent posts from [PLATFORM API].

Requirements:
- Authenticate using environment variables
- Fetch from multiple sources/channels: [LIST SOURCES]
- Filter for posts containing keywords: [LIST KEYWORDS]
- Return structured data with: id, title, content, source, url, timestamp
- Include error handling and rate limiting
- Log progress for debugging


Step 3: Create the Classification Tool

The classifier uses AI to categorize content.

import    from "@mastra/core/tools";
import    from "zod";

const CATEGORIES = {
  "category-1": {
    name: "Category One",
    description: "Description of what this category covers",
    keywords: ["keyword1", "keyword2"],
  },
  // Add more categories...
};

export const classificationTool = createTool({
  id: "content-classifier",
  description: "Classifies content into predefined categories using AI",
  
  inputSchema: z.object({
    items: z.array(z.object({
      id: z.string(),
      title: z.string(),
      content: z.string(),
      source: z.string(),
    })),
    confidenceThreshold: z.number().default(0.5),
  }),
  
  outputSchema: z.object({
    classifiedItems: z.array(z.object({
      id: z.string(),
      title: z.string(),
      content: z.string(),
      source: z.string(),
      category: z.string(),
      confidence: z.number(),
      reasoning: z.string(),
    })),
    totalClassified: z.number(),
  }),

  execute: async ({ context, mastra, runtimeContext }) => {
    const logger = mastra?.getLogger();
    const agent = mastra?.getAgent("classifier-agent");
    
    const classifiedItems = [];
    
    for (const item of context.items) {
      const result = await agent?.generate(
        `Classify this content into one of these categories: $
        
        Title: $
        Content: $
        
        Respond with JSON: { "category": "category-id", "confidence": 0.0-1.0, "reasoning": "why" }`
      );
      
      // Parse and add to results
    }
    
    return { classifiedItems, totalClassified: classifiedItems.length };
  },
});


Prompt for Classification Logic

Create a classification system for [CONTENT TYPE] with these categories:

1. [CATEGORY 1]: [DESCRIPTION]
2. [CATEGORY 2]: [DESCRIPTION]
3. [CATEGORY 3]: [DESCRIPTION]

For each piece of content, determine:
- Primary category (highest relevance)
- Confidence score (0.0 to 1.0)
- Key signals that influenced the classification
- Risk level (low/medium/high) based on [RISK CRITERIA]

Provide the classification prompt I should use with GPT-5.


Step 4: Create the Persona Matcher Tool

Match classified content to the best response persona.

File: src/mastra/tools/matcherTool.ts

import    from "@mastra/core/tools";
import    from "zod";

const PERSONAS = {
  "expert-1": {
    name: "Expert Name",
    title: "Professional Title",
    strengths: ["category-1", "category-2"],
    tone: "professional and helpful",
    disclosure: "Disclosure statement here",
  },
  // Add more personas...
};

export const matcherTool = createTool({
  id: "persona-matcher",
  description: "Matches content to optimal response personas",
  
  inputSchema: z.object({
    classifiedItems: z.array(z.object({
      id: z.string(),
      category: z.string(),
      confidence: z.number(),
    })),
  }),
  
  outputSchema: z.object({
    matchedItems: z.array(z.object({
      itemId: z.string(),
      personaId: z.string(),
      personaName: z.string(),
      matchScore: z.number(),
    })),
  }),

  execute: async ({ context, mastra }) => {
    const logger = mastra?.getLogger();
    
    const matchedItems = context.classifiedItems.map(item => {
      // Score each persona based on category alignment
      let bestMatch = { personaId: "", score: 0 };
      
      for (const [id, persona] of Object.entries(PERSONAS)) {
        const score = persona.strengths.includes(item.category) ? 0.9 : 0.3;
        if (score > bestMatch.score) {
          bestMatch = { personaId: id, score };
        }
      }
      
      return {
        itemId: item.id,
        personaId: bestMatch.personaId,
        personaName: PERSONAS[bestMatch.personaId].name,
        matchScore: bestMatch.score,
      };
    });
    
    return   ;
  },
});


Step 5: Create the Response Generator Tool

Generate draft responses using AI.

File: src/mastra/tools/responseGeneratorTool.ts

import    from "@mastra/core/tools";
import    from "zod";

export const responseGeneratorTool = createTool({
  id: "response-generator",
  description: "Generates persona-appropriate draft responses",
  
  inputSchema: z.object({
    items: z.array(z.object({
      id: z.string(),
      title: z.string(),
      content: z.string(),
      personaName: z.string(),
      personaTone: z.string(),
      disclosure: z.string(),
    })),
    responsesPerItem: z.number().default(2),
  }),
  
  outputSchema: z.object({
    generatedResponses: z.array(z.object({
      itemId: z.string(),
      responses: z.array(z.object({
        text: z.string(),
        approach: z.string(),
      })),
    })),
  }),

  execute: async ({ context, mastra }) => {
    const agent = mastra?.getAgent("response-agent");
    
    const results = [];
    
    for (const item of context.items) {
      const prompt = `
        As $, write $ helpful responses to this:
        
        "$"
        $
        
        Guidelines:
        - Tone: $
        - Include disclosure: $
        - Be genuinely helpful, not promotional
        - Each response should take a different approach
      `;
      
      const result = await agent?.generate(prompt);
      // Parse and structure responses
    }
    
    return { generatedResponses: results };
  },
});


Prompt for Response Generation

Create a response generation prompt for [YOUR USE CASE].

The AI should generate [NUMBER] response variations that:
- Match the persona's voice and expertise
- Address the user's specific question/concern
- Include appropriate disclosures
- Avoid [LIST THINGS TO AVOID]
- Follow community guidelines for [PLATFORM]

Each response should take a different approach:
1. Direct answer
2. Educational context
3. Personal experience angle


Step 6: Create the Delivery Tool

Send alerts to your team.

File: src/mastra/tools/deliveryTool.ts

import    from "@mastra/core/tools";
import    from "zod";

export const deliveryTool = createTool({
  id: "alert-delivery",
  description: "Delivers opportunity alerts to team channels",
  
  inputSchema: z.object({
    alerts: z.array(z.object({
      title: z.string(),
      url: z.string(),
      category: z.string(),
      persona: z.string(),
      responses: z.array(z.string()),
      confidence: z.number(),
    })),
    webhookUrl: z.string().optional(),
  }),
  
  outputSchema: z.object({
    delivered: z.number(),
    failed: z.number(),
  }),

  execute: async ({ context, mastra }) => {
    const logger = mastra?.getLogger();
    const webhookUrl = context.webhookUrl || process.env.SLACK_WEBHOOK_URL;
    
    if (!webhookUrl) {
      logger?.warn("No webhook URL configured");
      return { delivered: 0, failed: 0 };
    }
    
    let delivered = 0;
    
    for (const alert of context.alerts) {
      const payload = {
        blocks: [
          {
            type: "header",
            text: { type: "plain_text", text: `🎯 $ 
          },
          {
            type: "section",
            text: { type: "mrkdwn", text: `*$ 
          },
          // Add response options, buttons, etc.
        ]
      };
      
      const response = await fetch(webhookUrl, {
        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify(payload),
      });
      
      if (response.ok) delivered++;
    }
    
    return { delivered, failed: context.alerts.length - delivered };
  },
});

Step 7: Build the Workflow

Orchestrate all tools into a cohesive workflow.

File: src/mastra/workflows/monitoringWorkflow.ts

import { createStep, createWorkflow } from "../inngest";
import    from "zod";

import    from "../tools/scannerTool";
import    from "../tools/classificationTool";
import    from "../tools/matcherTool";
import    from "../tools/responseGeneratorTool";
import    from "../tools/deliveryTool";

const scanStep = createStep({
  id: "scan",
  inputSchema: z.object({}),
  outputSchema: z.object({ /* ... */ }),
  execute: async ({ mastra, runtimeContext }) => {
    return await scannerTool.execute({ context: {}, mastra, runtimeContext });
  },
});

const classifyStep = createStep({
  id: "classify",
  inputSchema: z.object({ /* from scan */ }),
  outputSchema: z.object({ /* ... */ }),
  execute: async ({ inputData, mastra, runtimeContext }) => {
    return await classificationTool.execute({ 
      context: { items: inputData.items },
      mastra, 
      runtimeContext 
    });
  },
});

// Add remaining steps...

export const monitoringWorkflow = createWorkflow({
  id: "monitoring-workflow",
  inputSchema: z.object({}),
  outputSchema: z.object({ /* ... */ }),
})
  .then(scanStep)
  .then(classifyStep)
  .then(matchStep)
  .then(generateStep)
  .then(deliverStep)
  .commit();

Step 8: Configure the Cron Trigger

Set up scheduled execution.

File: src/mastra/triggers/cronTrigger.ts

import    from "../inngest";
import    from "../index";

export const cronTrigger = inngest.createFunction(
  { id: "scheduled-monitor", name: "Scheduled Monitor" },
  { cron: "*/10 * * * *" }, // Every 10 minutes
  async ({ event, step }) => {
    const workflow = mastra.getWorkflow("monitoring-workflow");
    await workflow.start({ inputData:  );
    return { status: "success" };
  }
);

Step 9: Register Everything

File: src/mastra/index.ts

import    from "@mastra/core";
import    from "./tools/scannerTool";
import    from "./tools/classificationTool";
// ... import other tools

import    from "./agents/classifierAgent";
import    from "./agents/responseAgent";

import    from "./workflows/monitoringWorkflow";

export const mastra = new Mastra({
  tools: {
    scannerTool,
    classificationTool,
    // ... other tools
  },
  agents: {
    classifierAgent,
    responseAgent,
  },
  workflows: 
    
  ,
});

Step 10: Test Your Automation

Manual Test Command

curl -X POST http://localhost:5000/api/workflows/monitoring-workflow/start-async \
  -H "Content-Type: application/json" \
  -d '{"inputData": '

Test Script

// tests/testAutomation.ts
import Inngest from "inngest";

const inngest = new Inngest({ id: "test" });

async function test() {
  await inngest.send({
    name: "replit/cron.trigger",
    data: { test: true }
  });
  console.log("✅ Trigger sent!");
}

test();

Configuration Checklist

Customization Ideas

  • Multi-platform: Add scanners for Twitter, Discord, forums

  • Sentiment analysis: Add sentiment scoring to classification

  • Priority queuing: Route high-confidence items to different channels

  • Analytics: Track response rates and engagement over time

  • Approval workflow: Add human-in-the-loop before posting responses

Troubleshooting

This pattern adapts to any monitoring use case: customer support, competitive intelligence, trend detection, community management, and more.